

DEPARTAMENTO DE CIENCIAS Maritza Guzmán Arenas

NIVEL: 4º Medio

FORMACIÓN DIFERENCIADA QUÍMICA

Instrucciones

Estimadas Estudiantes: El presente documento, mide el grado de avance de los temas que hemos revisado hasta ahora: Modelo atómico-Estructura atómica-Configuración-Tabla Periódica-Enlace químico.

Lea atentamente cada una de las preguntas y anote su respuesta en la tabla. Las respuestas debes enviarla a mi correo: mguzman.csquim.ln@gmail.com

La fecha de entrega es el 1 de Julio. ¡¡¡Buen Trabajo!!!

OBJ: "Demostrar el nivel de apropiación de los objetivos relacionados con habilidades adquiridas".

- 1. ¿Cuál de las siguientes afirmaciones es (son) incorrecta(s) respecto de los protones?
- I) son partículas con masa similar a la del neutrón.
- II) se componen siempre de un neutrón y un electrón.
- III) el número de protones define la identidad de un átomo.
- A) Solo I.
- B) Solo II.
- C) Solo III.
- D) Solo I y II.
- E) Solo II y III.
- 2. De acuerdo con la notación establecida, el electrodo de nombre *cátodo* corresponde a un
- A) ion con carga positiva.
- B) electrodo con carga negativa.
- C) electrodo con carga positiva.
- D) ion con carga negativa.
- E) haz de fotones a gran velocidad.

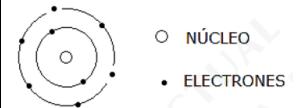
- 3. Considerando las partículas que conforman al átomo, sería incorrecto afirmar que
- I) si el número de electrones coincide con el de neutrones, entonces el átomo es un catión.
- II) si el número de neutrones coincide con el de protones, entonces el átomo es un anión.
- III) Si el número de protones coincide con el de electrones, entonces el átomo es neutro.
- A) Solo I.
- B) Solo III.
- C) Solo I y II.
- D) Solo II y III.
- E) I, II y III.

4. Considere la siguiente especie iónica:

Teniendo en cuenta la notación estandarizada, se infiere correctamente que

- I) la suma de protones y neutrones es 14.
- II) la suma de electrones y protones es 10.
- III) la suma de neutrones y electrones es 18.
- A) Solo I.
- B) Solo II.
- C) Solo I y II.
- D) Solo I y III.
- E) I, II y III.
- 5. Respecto de los *rayos catódicos* y sus propiedades puede afirmarse correctamente que
- A) se componen de protones a gran velocidad.
- B) viajan desde el ánodo hasta el cátodo.
- C) también se denominan rayos canales.
- D) no poseen masa, pero sí carga eléctrica.
- E) se propagan en línea recta, a la velocidad de la luz.

- 6. A un alumno en clases le correspondió analizar una especie química con las siguientes características:
 - 15 protones
 - 14 neutrones
 - 18 electrones


En su informe el alumno concluyó que:

- 1. Se trata de un catión con carga eléctrica +3.
- 2. En el núcleo el ion presenta 29 partículas.
- 3. El número atómico (Z) del ion es 15.
- 4. El ion presentar 3 niveles de energía con electrones.

Al respecto, ¿cuál(es) de las anteriores conclusiones es (son) correcta(s) respecto de la

- especie química?
- A) Solo la conclusión 3.
- B) Solo las conclusiones 1 y 3.
- C) Solo las conclusiones 1, 2 y 4
- D) Solo las conclusiones 2, 3 y 4
- E) Todas las conclusiones son correctas.
- 7. ¿Qué partícula subatómica es la única que formaba parte del modelo atómico de Joseph Thomson?
- A) Electrones
- B) Neutrones
- C) Positrones
- D) Protones
- E) Cuarks

- 8. De acuerdo con el modelo "de estado estacionario" planteado por Bohr, en el 3º nivel de energía inmediato al núcleo hay capacidad para
 A) 2 electrones.
 B) 4 electrones.
 C) 18 electrones.
 D) 10 electrones.
 E) 8 electrones.
- 9. Analizando el siguiente modelo atómico (para un elemento) se deduce lo siguiente

- I) su núcleo debe contener 6 protones.
- II) el primer nivel de energía está lleno.
- III) corresponde al átomo de Carbono.
- De las anteriores es (son) correcta(s)
- A) Solo I.
- B) Solo II.
- C) Solo I y II.
- D) Solo II y III.
- E) I, II y III.

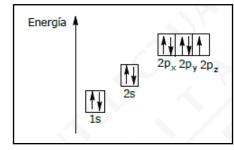
- 10. El siguiente postulado:
- "Los átomos de una misma sustancia son idénticos, con las mismas propiedades físicas y químicas, y los de sustancias diferentes, tienen propiedades distintas". Fue establecido por
- A) Demócrito.
- B) Aristóteles.
- C) John Dalton.
- D) Williams Crookes.
- E) Ernest Rutherford.
- 11. El número cuántico magnético del único electrón que posee el átomo de hidrógeno, tiene valor
- A) 1
- B) 3
- C) +2
- D) +1
- E) 0
- 12. ¿Cuántos electrones se ubican en el cuarto nivel de energía del átomo de Titanio (asuma estado basal)
- A) 2 B) 4
- C) 5
- D) 7
- E) 9

- 13. Si la configuración electrónica para un átomo es:
 - 1s², 2s² 2p², entonces sería incorrecto afirmar que
- I) todos sus electrones están apareados.
- II) posee solo 2 electrones de valencia.
- III) contiene en total 4 orbitales con electrones.
- A) Solo I.
- B) Solo III.
- C) Solo I y II.
- D) Solo II y III.
- E) I, II y III.
- 14. La siguiente es la configuración electrónica de un elemento en estado basal

[2He]	$\uparrow \downarrow$	1	1	↑
	2s	2p _x	$2p_v$	$2p_z$

Del análisis se deduce que correctamente que

- A) elemento posee número atómico igual a 5.
- B) el número cuántico principal del último electrón es 1.
- C) los últimos 3 electrones tienen el mismo número magnético.
- D) el elemento se estabiliza electrónicamente adoptando carga eléctrica -3.
- E) en el nivel de mayor energía el átomo presenta un total de 3 electrones.


15. Considerando los principios de energía y el convenio para el espín, la siguiente combinación de números cuánticos para el último electrón de un átomo permiten predecir que el número atómico del mismo será:

n	I	m	s
2	1	+1	-1/2

- A) 8
- B) 9
- C) 10
- D) 12
- E) 14
- 16. El siguiente diagrama muestra la configuración electrónica de un elemento en estado basal.

Cada flecha indica un electrón. Considerando el principio de exclusión, es correcto afirmar que el elemento

- I) posee 7 electrones de valencia.
- II) tiene solo 2 niveles de energía con electrones.
- III) los 2 primeros electrones son los de menor energía.

- A) Solo I.
- B) Solo II.
- C) Solo III.
- D) Solo II y III.
- E) I, II y III.

17. La configuración electrónica del azufre (S) es la siguiente 1s², 2s² 2p6, 3s² 3p4

Considerando esta distribución, puede inferirse que si el azufre capta 2 electrones

- I) mantiene su número atómico.
- II) completa los 3 primeros niveles de energía.
- III) adquiere la configuración electrónica del Argón (Z=18).

De las anteriores es (son) correcta(s)

- A) solo I.
- B) solo II.
- C) solo I y II.
- D) solo I y III.
- E) solo II y III.

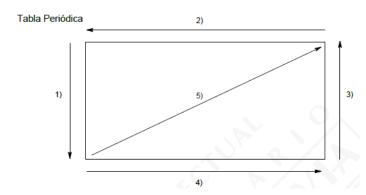
18. ¿Cuál de los siguientes electrones presenta la mayor cantidad de electrones de valencia?

- A) Magnesio (Z=12)
- B) Nitrógeno (Z=7)
- C) Cloro (Z=17)
- D) Escandio (Z=21)
- E) Helio (Z=2)

19. ¿Cuál de las siguientes configuraciones electrónicas NO cumple con la regla de Friedrich Hund

(Principio de Máxima Multiplicidad)?

- A) $1s^3$, $2s^1 2p_x^2 p_y^1 p_z^1$
- B) $1s^2$, $2s^2$ $2p_x^2$ p_y^1 p_z^1
- C) $1s^2$, $2s^2$ $2p_x^2$ p_y^2 p_z^2
- D) $1s^2$, $2s^2$ $2p_x^2$ p_y^1 p_z^0
- E) $1s^1$, $2s^2$ $2px^2$ py^1 pz^1


20. La posición en la Tabla Periódica de un elemento es la siguiente

Átomo	Período	Grupo
X	4	VI-B

De acuerdo con los datos la configuración electrónica externa para el elemento debe ser

- A) 4s² 3d⁵
- B) 4s¹ 3d⁵
- C) $4s^2 3d^6$
- D) $4s^2 3d^7$
- E) 4s¹ 3d⁴

- 21. ¿Cuál de las siguientes configuraciones electrónicas corresponde al elemento con mayor tamaño (radio atómico) en las alternativas?
- A) $1s^2 2s^2 2p^1$
- B) 1s² 2s² 2p²
- C) 1s² 2s² 2p³
- D) 1s² 2s² 2p⁴
- E) 1s² 2s² 2p⁵
- 22. Respecto del siguiente esquema general de la Tabla Periódica, puede afirmarse que el *carácter metálico* de los elementos aumenta en el (los) sentido(s)

- A) 1
- B) 4
- C) 5
- D) 1 y 2
- E) 4 y 5

23. La siguiente porción de la tabla contiene a los elementos metálicos del grupo I-A (se incluye al hidrógeno)

Н
Li
Na
K
Rb
Cs
Fr

Analizando sus posiciones y las propiedades periódicas de cada uno de ellos (en términos generales) sería **incorrecto** afirmar que

- A) Sodio (Na) es más electronegativo que el Rubidio (Rb).
- B) Francio (Fr) es un átomo con más masa que Litio (Li).
- C) Cesio (Cs) tiene mayor carácter metálico que Sodio (Na).
- D) Litio (Li), Sodio (Na) y Potasio (K) son sólidos a temperatura ambiente.
- E) El potencial de ionización del Hidrógeno (H) es el menor en ese grupo.
- 24. ¿Con qué elemento, cuyo periodo y grupo se señala, formará un enlace iónico el elemento Magnesio (Z=12)?
 - P G
- A) 2 2 (II A)
- B) 2 17 (VII A)
- C) 3 13 (III A)
- D) 3 2 (II A)
- E) 1 1 (I A)

25. Si un ion X⁻² presenta la siguiente configuración electrónica 1s², 2s² 2p⁶, 3s² 3p⁶ Entonces el grupo y periodo del *elemento* en el sistema periódico será

Grupo Período

- A) I-A 4 B) VIII-A 3
- C) V-A 6
- D) VI-A 3
- E) VII-A 3
- 26. Si un elemento presenta en el nivel de valencia la siguiente configuración electrónica 3s² 3px² 3py¹ 3pz¹

Entonces, el grupo al que pertenece y su valor de Z serán

Grupo Z

- A) IV-A 14
- B) VI-A 16
- C) IV-A 13
- D) VI-B 16
- E) II-A 12
- 27. ¿Qué fórmula tendría un compuesto iónico del tipo X_nY_m , si Y pertenece al grupo VI-A y X al grupo I-A?
- A) XY
- B) XY₂
- C) X₂Y
- D) XY₆
- E) X₆Y
- 28. De acuerdo con la siguiente reacción: $Y \longrightarrow Y^{+3} + 3e$

Sería correcto inferir que

- A) Y ganó 3 electrones.
- B) en el proceso se emitió energía.
- C) el número atómico de Y aumentó.
- D) cambió la configuración electrónica de Y.
- E) la cantidad de partículas nucleares se modificó.

29. En la siguiente tabla se muestran los datos de punto de ebullición para algunos elementos representativos

Elemento	Z	P. Ebullición (°C)
н	1	-253
Li	3	1330
Be	4	2770
Na	11	892
Mg	12	1107
Al	13	2450

Del análisis de la tabla se puede inferir correctamente que

- I) si aumenta el valor de Z también aumenta el punto de ebullición.
- II) a temperatura ambiente son todos líquidos, con excepción del hidrógeno.
- III) por sobre los 3000 grados Celsius todos elementos de la tabla son gases.
- A) Solo I.
- B) Solo II.
- C) Solo III.
- D) Solo II y III.
- E) I, II y III
- 30. En las siguientes moléculas, ¿cuáles son las cargas eléctricas parciales de los átomos de Silicio, Fósforo y Azufre?

Si P S

- A) +4 -3 +6
- B) +4 +3 +4
- C) -3 +4 -6
- D) +3 -4 -4
- E) +4 -3 -4

TABLA DE RESPUESTAS

1.	7.	13.	19.	25.
2.	8.	14.	20.	26.
3.	9.	15.	21.	27.
4.	10.	16.	22.	28.
5.	11.	17.	23.	29.
6.	12.	18.	24.	30.

1 H 1,0	Número atómico — Masa atómica —		→			2 He 4,0	
3	4	5	6	7	8	9	10
Li	Be	B	C	N	O	F	Ne
6,9	9,0	10,8	12,0	14,0	16,0	19,0	20,2
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
23,0	24,3	27,0	28,1	31,0	32,0	35,5	39,9
19 K 39,1	20 Ca 40,0		<u>I</u>				